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Shear response of a frictional interface to a normal load modulation

L. Bureau, T. Baumberger, and C. Caroli
Groupe de Physique des Solides,* 2 place Jussieu, 75251 Paris Cedex 05, France

~Received 30 May 2000!

We study the shear response of a sliding multicontact interface submitted to a harmonically modulated

normal load, without loss of contact. We measure, at low velocities (V,100 mm s21), the average valueF̄ of
the friction force and the amplitude of its first and second harmonic components. The excitation frequency
( f 5120 Hz! is chosen much larger than the natural one, associated with the dynamical aging of the interface.
We show the following:~i! In agreement with the engineering thumb rule, even a modest modulation induces

a substantial decrease ofF̄. ~ii ! The Rice-Ruina state and rate model, though appropriate to describe the slow
frictional dynamics, must be extended when dealing with our ‘‘high’’ frequency regime. That is, the rheology
which controls the shear strength must explicitly account not only for the plastic response of the adhesive
junctions between load-bearing asperities, but also for the elastic contribution of the asperities bodies. This
‘‘elastoplastic’’ friction model leads to predictions in excellent quantitative agreement with all our experimen-
tal data.

PACS number~s!: 46.55.1d, 68.35.Ja, 83.50.Nj
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I. INTRODUCTION

Friction between solids carrying a time-dependent norm
load is a subject of interest in different fields, from mecha
cal engineering, where the ‘‘friction-lowering’’ effect of ex
ternal vibrations is well known@1# and commonly used in
applications, to geophysical studies of the effect of ra
stress changes on static and dynamic friction of rocks@2,3#,
aiming at a better understanding of the coupling betw
normal and tangential stress states on slipping faults@4–6#.

These studies involve multicontact interfaces~MCI’s!,
i.e., interfaces between macroscopic solids with rough s
faces. The real area of contact thus consists of a large n
ber of small contacts with sizes on the micrometer scale

In a situation of constant normal load on the MCI, t
phenomenological state- and rate-dependent friction~SRF!
model, formulated by Rice and Ruina@7#, successfully de-
scribes the details of the low-velocity dynamics~typically in
the 0.01–100mm s21 range! of such systems, such as th
bifurcation between steady state and stick-slip oscillati
@8#. The model states that the dynamic friction forceF f r

depends on the instantaneous sliding velocityẋ and on a
dynamic state variableF as

F f r~ ẋ,F!5WFm01A lnS ẋ

V0
D 1B lnS V0F

D0
D G , ~1!

wherem0 is the dynamic friction coefficient in steady slidin
at the reference velocityV0, andA andB are measured to b
positive and of typical order 1022 ~with B.A).

The state variableF can be interpreted as the ‘‘age’’ o
the MCI, i.e., the average duration of the transient con
between load bearing asperities. For example, in station
sliding at velocityV, the set of microcontacts is destroye

*Associéau Centre National de la Recherche Scientifique et
Universités Paris 6 et Paris 7.
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and replaced by a new one over a characteristic slid
length D0, and the state variable is thus expressed asF
5D0 /V.

More generally, the model specifies the time evoluti
law of F as

Ḟ512
ẋF

D0
. ~2!

In Eq. ~1!, the two corrections tom0 have distinct physical
meanings: the first term describes an instantaneous velo
strengthening of the interface, while the second expres
strengthening of the interface with its ‘‘age,’’ which in sta
tionary sliding, whereF5D0 /V, leads to a velocity-
weakening effect.

In the spirit of the Bowden and Tabor analysis@9#, for a
MCI, one can write the friction force as@10#

F f r5ss~ ẋ!S r~F,W!, ~3!

wheress defines an interfacial shear strength,S r is the real
area of contact between the solids, andW is the normal load
carried by the multicontact interface. The age-strengthen
effect is associated with the creep growth of the microcon
area under normal load:

S r~F,W!5S0~W!F11j lnS FV0

D0
D G . ~4!

S0—the real area of contact atF5D0 /V0—exhibits a linear
dependence onW, as explained by Greenwood and William
son’s model@11# of contact between rough surfaces. That
the friction force obeys the Amontons lawF f r}W.

The velocity-dependent interfacial strength of the int
face is described as:

ss~ ẋ!5ss0F11h lnS ẋ

V0
D G , ~5!x
6810 ©2000 The American Physical Society
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This form for the interface ‘‘rheology,’’ discussed in detail
Ref. @10#, results from the thermally activated depinning
multistable nanometric units localized in a layer of nanom
ric thickness forming a junction between micrometric aspe
ties. Equations ~4! and ~5! yield Eq. ~1! with m0
5ss0S0 /W, j5B/m0, and h5A/m0. Also, sincej,h!1,
non-linear logarithmic terms can be neglected.

The SRF model, and its physical interpretation presen
above, have been validated by friction experiments on dif
ent classes of contacting materials, namely, granite, pa
polymer glasses, and elastomers, under constant normal
applied to the solids.

In the case of a time-dependent normal load, one can
note that in the Amontons-Coulomb description (F f r5mW,
with constantm), a change inW would lead to a proportiona
change inF f r , in particular a harmonic normal load modu
lation W5W0„11e cos(vt)… would produce a harmonic fric
tional modulation about a nonmodified average valuemW0.

In the SRF framework, the variations ofẋ and F are
nonlinearly coupled, through Eqs.~1! and ~2!, to the load
modulation, thus resulting in nontrivial effects on the frictio
force ~such as, for instance, an anharmonic response
harmonic normal load!. However, the model as expressed
Eqs. ~1! and ~2! may not be sufficient to describe correct
the frictional response for the following reasons:~i! the in-
terface rheology expressed by Eq.~5! may not hold for
‘‘fast’’ changes ofW; and~ii ! the load variation may modify
the interface age strengthening process, thus leading
changes in the evolution ofS r with F, or in the evolution
law of the state variableF itself.

Based on their results on the response to normal st
steps and pulses in granite friction experiments, Linker a
Dieterich @2# suggested modifying the evolution law ofF,
while retaining the functional form@Eq. ~4!# of theF depen-
dence ofS r . Arguing that a sudden change in normal stre
would result in a sudden change inF, they postulated

Ḟ512
ẋF

D0
2

aṡ

Bs
F, ~6!

where they inferreda50.2, for granite, from their analysi
of the response to sudden normal load steps.

In a recent study, Richardson and Marone@3# investigated
the influence of normal stress modulations on the so-ca
‘‘frictional healing’’ effect in a granular material layer con
fined between rough granite blocks: starting from stea
sliding, shear loading is stopped, and the subsequent s
stress relaxation is measured in presence of a 1-Hz no
load modulation~a modulation frequency close to the cha
acteristic stick-slip oscillations frequency that can be infer
for their system!.

Friction experiments with confined granular media ha
been successfully described by the SRF model in situat
of constant normal load@12# ~although the physical meanin
of the variableF is not clear yet for these systems!. How-
ever, the use of the constitutive law proposed by Linker a
Dieterich to include the time dependence of the normal lo
did not account properly for the details of the results o
tained by Richardson and Marone, in particular the am
tude of stress relaxation after stopping the drive, and
height of the stress overshoot after resuming loading.
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In this paper we present an extensive study of the effec
a harmonic modulation of the normal load,W5W0„1
1e cos(vt)…, on the dynamic frictional response of a mult
contact interface. Experiments are conducted on an inter
between two blocks of poly~methyl-metacrylate! ~PMMA!,
at velocitiesV,100 mm s21, a load modulation frequency
f 5120 Hz@V/(2pD0), and a relative amplitudee in the
range 531023–0.5 ~so that no loss of contact between th
surfaces occurs!.

We study quantitatively the averageF̄ and the compo-
nents at frequencyf and 2f , F1 and F2, of the tangential
pulling force,

F5K~Vt2x!5Mẍ1F f r ~7!

for different values ofV ande; these results are presented
Sec. II. We find in particular that the modulation ofW in-
duces a systematic decrease of the average dynamic fric
coefficient m̄5F̄/W0. This effect, which increases with
higher e, is quite substantial: a typical magnitude of th
effect is a 20% decrease ofm̄ for e50.5.

To analyze our experimental data quantitatively, we ne
to evaluate which fraction,ee f f /e, of the load modulation is
effectively borne by the microcontacts. Indeed, the norm
load modulation is too fast for air to be drained in and out
the micrometer-thick interfacial gap. We have studied t
‘‘leaking air cushion’’ effect by conducting similar exper
ments under a primary vacuum. From these experiments
infer that ee f f /e'0.4, and we use this in the subseque
analysis as a scaling factor for the modulation amplitu
Section III is devoted to the analysis of these results in te
of the SRF model and its possible extensions to fast l
modulations:

~i! We first test the unmodified SRF model by setting
Eq. ~1! W→W(t) and using the evolution law@Eq. ~2!# for
the state variableF. Numerical integration of these equa
tions leads to a quantitatively good prediction of the avera
friction force F̄(e). However, the predicted oscillating tan
gential force componentsF1 andF2 strongly depart from the
observed dependences one andV.

~ii ! We then test the proposition of Linker and Dieteric
Using their evolution law@Eq. ~6!# and their proposed value
of a50.2, we find that~i! the decrease ofF̄(e) is much
smaller than the measured values, and~ii ! the agreement for
F1 andF2 is not better than in the previousa50 test.

An attempt to describe thee dependence ofF̄ correctly,
with a value ofa small enough (a50.02), leads to results
close to those obtained with the basic SRF equations;
also holds forF1 andF2. That is, to say, as confirmed by
perturbation calculation ine, our experiments do not dis
criminate with respect to the Linker-Dieterich evolution la
for such small values ofa.

Thus, this modified aging law, even if valid, does n
suffice to account properly for the details of the friction
response.

~iii ! We propose to modify expression~5! for the follow-
ing physical reason: we know from static measurements@13#
that a MCI exhibits, at shear forces much smaller than
static threshold, an elastic tangential response. One can
duce from this a shear stiffnesskasp with the particular fea-
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ture kasp}W. Now, in our interpretation of friction, the rat
variable appearing inss must be the true rate of irreversib
~plastic! strain of the interfacial junction of nanometer thic
nessh. When taking into account the asperity elasticitykasp,
strictly speaking, this strain rate readsh21d(x2F/kasp)/dt.
In quasistationary motion, this reduces to theẋ/h strain rate,
hence the usualss( ẋ) expression. In the present experime
tal situation,kasp is modulated asW itself, and the difference
between the total and plastic strain rates becomes relev
Indeed, we show that this extended phenomenological e
toplastic generalization of interfacial dissipation leads to
very satisfactory description of the average and oscillat
shear responses to fast normal load modulations.

II. EXPERIMENTS AND RESULTS

A. Experimental setup and methods

The tribometer is composed of a slider of massM driven
along a track through a loading spring of stiffnessK, one end
of which is pulled at constant velocityV, as schematized in
the inset of Fig. 1. The slider and track are made of PMM
@14# with nominally flat surfaces lapped with SiC powder
a roughness of order 1mm, thus forming a multicontac
interface.

A detailed drawing of the setup is given in Fig. 1. W
impose the velocityV of the loading point, in the range
0.1–100 mm s21, by means of a translation stage driven
a stepping motor. The tangential load is applied on the sl
through a leaf spring of stiffnessK50.2 N mm21, which is
the more compliant part of the system. The dead weigh
the slider is 16 N. The average normal loadW0 can be set in
the range 3–16 N with the help of a vertical spring attach
to a remote point itself translated horizontally at the pulli
velocity V through a second translation stage, in order
prevent any tangential coupling.

FIG. 1. Main elements of the experimental setup: translat
stage~Drv!; loading leaf spring~Lsp!; displacement gauge~Gg!;
vibration exciter~Vb!; weighting spring~Spr!; accelerometer~Acc!.
The inset is the schematic representation of the spring-slider-t
dynamical system with control parametersW ~normal load!, V
~driving velocity!, andK ~external spring stiffness!.
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The normal load modulation is achieved by means o
vibration exciter rigidly attached to the slider: a harmon
voltage input of given amplitude and frequencyf results in a
harmonic vertical motion of the moving element of the e
citer on which an accelerometer is fixed. An acceleration
amplitudeg of this moving element of massm induces a
normal load modulation on the slider of amplitudemg at
frequency f. We thus obtain a normal loadW5W0„1
1e cos(vt)… with v52p f and e5mg/W0 in the range 5
31023–0.5.

We use the loading leaf spring as a dynamometer by m
suring its deflectionDX by means of an eddy current dis
placement gauge. The tangential force applied to the slide
thusF5KDX. We measure the average value of the out
voltage of the gauge, and use a lock-in amplifier to meas
the amplitude of the first and second harmonics of this out
signal with respect to the harmonic excitation signal. W
thus characterize the shear force through its average valuF̄
and its ac components at frequenciesf and 2f , of respective
amplitudesF1 andF2.

The experiments are conducted according to the follow
protocol: for a fixed set of parameter valuesW0 andV lead-
ing to steady sliding whene50, we measurem̄(0)5F̄(e
50)/W0. The normal load modulation is then set at amp
tude e, while sliding, and shear force measurements yi
m̄5F̄/W0 , m15uF1u/W0 andm25uF2u/W0. The modulation
is then switched off, andF̄(e50) is systematically remea
sured before setting a new value ofe, in order to check that
no drift occurred during the measurement. Moreover,
check that foreÞ0 the shear force signal does not exhib
low-frequency stick-slip oscillations. The experimental r
sults reported below have been obtained with an aver
load W057 N and modulation frequenciesf of 120 or 200
Hz, chosen to be away from any mechanical resonance
quency of the setup.

B. Results

1. Average dynamic friction

The effect of the normal load modulation on the avera
tangential force response is to systematically lower the
namic friction coefficient. The ratiom̄5F̄/W0 decreases as
the modulation amplitudee is increased. The variation
Dm̄(e)5m̄(e)2m̄(0), plotted in Fig. 2, becomes larger tha
the experimental noise fore*0.05, and is then quasilinea
with e, though it does not extrapolate to 0 ate50.

Figure 3 displays measurements ofm̄(V) for different val-
ues ofe. It appears that the only effect of an increase of t
load modulation amplitude is to shift down them̄(V) curve,
without changing the slope]m̄/] ln(V). Therefore, within ex-
perimental accuracy,Dm̄(e) is velocity independent.

2. ac components of the force response

The oscillating force response to a load modulation
frequencyf is found to be weakly anharmonic. We chara
terize it by the amplitudes of the first and second harmon
m1 andm2. The ratiom2 /m1 typically lies in the range 0.1–
0.2.
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PRE 62 6813SHEAR RESPONSE OF A FRICTIONAL INTERFACE TO . . .
The reduced first harmonicm15uF1u/W0 increases mono
tonically with e, and does not show any measurable dep
dence on the driving velocity, as presented in Fig. 4~a! where
we plot results atV51 and 10 mm s21. m1 is of order 1023

at e50.5, i.e., two orders of magnitude lower than the av
age shiftDm̄.

The amplitude of the second harmonic in the shear fo
response also exhibits a monotonic increase with the mo
lation amplitude. Moreover,m2(e) depends significantly on
velocity, the measured amplitude of this component be
lower for smallerV, as presented in Fig. 4~b!.

3. Role of the interfacial air layer

All the above results correspond to experiments p
formed at atmospheric pressure. The PMMA surfaces in c
tact are nominally flat over typicallyS05737 cm2, but
their roughness implies that air is trapped in an interfac
gap of micrometric thicknessh0. Any increase in norma
load is borne in parallel by the microcontacts and by
interfacial air layer. This excess pressure leads the air to
out of the edges of the sample, the rate of flow being limi
by the air viscosity. For instance, when trying to lift th
slider from the track, a strong suction is experienced. O
may therefore expect that the air layer plays a nonneglig
role in the interfacial response to load modulation.

In order to quantify experimentally this ‘‘leaking air cush
ion’’ effect, we conducted a set of control experiments un

FIG. 2. Variation of the reduced average friction forceDm̄

5„F̄(e)2F0…/W0 vs modulation amplitudee at f 5120 Hz. Open
symbols correspond to two sets of results atV51 mm s21, and full
symbols to two sets atV510 mm s21.

FIG. 3. Reduced average friction forcem̄ vs V for various values
of load modulation amplitude. open circles:e50; open triangles:
e50.2; full circles:e50.35; full triangles:e50.5.
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vacuum. The setup described in Sec.~II A ! was placed in a
vacuum chamber and allowed to work at pressures down
mbar ~a pressure at which the mean free path of air m
ecules becomes of order 10mm, i.e., much larger than the
interfacial gap, ensuring that the air effect has become n
ligible!.

We first measure the average dynamic friction coeffici
under constant normal load and findm0'0.5, a value equa
to the friction coefficient at atmospheric pressure. This c
firms that when the interfacial air layer is simply sheared,
corresponding viscous force is negligible with respect to
solid friction one.

Then, following the protocol described in Sec. II A, w
measurem̄(e), at V510 mm s21 and f 5200 Hz. In this
control experiment we have not been able to use the
quency f 5120 Hz at which all other data have been o
tained, due to the presence of a spurious mechanical r
nance of the vacuum chamber close to 120 Hz.

A comparison of the average friction coefficient variatio
Dm̄ measured atP51 atm and atP51 mbar is presented in
Fig. 5. Note that for a given modulation amplitude,uDm̄u is
larger in vacuum than in air. Moreover, when plotted as
function ofee f f5e/2.5, the results obtained atP51 atm are
found to collapse on those atP51 mbar~see Fig. 5!.

In the Appendix we present a model calculation of t
elastohydrodynamic response of the air layer. We show t
over the entire range ofe used in our experiments, the no
mal response of the interface is linear; hence the ratioee f f /e
does not depend one. Moreover, the estimated order of ma
nitude of this parameter atf 5200 Hz is found to be com-
patible with the above measured value.

FIG. 4. Amplitude of the harmonic components of the reduc
force response atf 5120 Hz: ~a! first harmonicm1(e); ~b! second
harmonicm2(e). Two sets of data are plotted for each velocity:V
51 mm s21 ~open symbols! andV510 mm s21 ~full symbols!.
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III. DISCUSSION AND MODEL

In this section we analyze our data within the SRF fram
work. The three parametersA, B andD0 involved in the SRF
laws are determined experimentally, at a constant loadW,
using the velocity dependence of the friction coefficie
m̄„ln(V)… and the dynamic characteristics of the respo
close to the bifurcation threshold~this method was describe
in detail in Ref. @10#!. For our system we measureA
50.01360.005, B50.02660.01, and D050.460.04mm.
All the numerical integrations of SRF laws presented bel
are performed with this set of parameter values.

A. Rice and Ruina’s model

Before coming to the question of whether or not the Ri
Ruina ~RR! equations themselves should be modified in
presence of load modulations, it is reasonable to study
which response is predicted by the RR model as such.
placingW in Eq. ~1! by its instantaneous value, the equati
of motion of the center of mass of the slider reads

Mẍ5K~Vt2x!2W0@11e cos~vt !#Fm01A lnS ẋ

V0
D

1B lnS FV0

D0
D G , ~8!

wherex(t) is the instantaneous position of the center of m
of the slider with respect to the track. We assume the ev
tion law of F @Eq. ~2!# to be unmodified:

Ḟ512
ẋF

D0
. ~9!

1. Perturbative regime

Let us first consider the case wheree!1. We linearize
Eqs.~8! and ~9! about the steady sliding state at velocityV,
e50:

Fst5D0 /V, xst5Vt2W0 /K ~10!

Setting

FIG. 5. Reduced average friction forceDm̄(e), for V
510 mm s21 and f 5200 Hz at pressuresP51 mbar ~open
circles! and P51 atm ~open triangles!. The same set of data atP
51 atm is also plotted~full triangles! as a function of the scaled
amplitudee/2.5.
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dF5F2Fst5 Re„eF1 exp~ ivt !…, ~11!

dx5x2xst5 Re„eX1 exp~ ivt !…, ~12!

to first order ine we obtain

S 2Mv21K1 iW0v
A

VDX11W0

BV

D0
F152W0m̄~V!,

~13!

i
v

V
X11S iv1

V

D0
DF150 ~14!

wherem̄(V)5m02(B2A)ln(V/V0), We thus obtain

X152
W0m̄

D S iv1
V

D0
D , ~15!

F15
ivW0m̄

VD
, ~16!

whereD reads

D5
KV

D0
S v

vc
D 2F2

K

Kc
1X12S v

v0
D 2CS vc

v D 2

2 i S vc

v DAB2A

A XS v

v0
D 2

2S 12
K

Kc
D CG , ~17!

and ~see Ref.@10#!

Kc5
~B2A!W0

D0
, ~18!

vc5AB2A

A

V

D0
, ~19!

respectively, are the critical stiffness and pulsation at
stick-slip bifurcation for the unmodulated system.v0

5AK/M'360 s21 is the inertial frequency.
In our experimental conditions, withV510mm s21 and

(B2A)/A;1, vc.25 s21, so vc!v,v0. On the other
handK/Kc*1. ThenD'2v2AW0 /V, indicating in particu-
lar that inertia is negligible. Finally,

m15
KuX1u

W0
e5

em̄

A

V

v

K

W0
. ~20!

Similarly, a second order expansion ine yields the cor-
rections at frequencies 2v and 0, namely,

m2'
V

v

Km̄2

2W0A2
e2, ~21!

Dm̄'2
m̄~m̄12A!

4A
e2. ~22!

Note that Eq.~22! correctly predicts a decrease of the ave
age friction coefficient.
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It is interesting to compare the relative perturbative c
rections on the age and velocity variables. One finds

UdF/Fst

d ẋ/V
U'vc

v
!1, ~23!

showing that, in our regime, the modulation of the age va
able contributes negligibly to the shear response.

Moreover, due to the smallness ofA, the effective pertur-
bation parameter is given by

Ud ẋ

V
U5 em̄

A
;50e; ~24!

that is, the perturbative regime (e!1022) is in practice out
of experimental reach. We thus must resort to full integrat
of the above RR equations.

2. Average friction coefficient decrease

Numerical results forDm̄(e) are plotted in Fig. 6 at exci-
tation frequency f 5120 Hz and velocitiesV51 and
10 mm s21. Note that a very weak dependence onV is pre-
dicted, as observed experimentally.

In Sec. II B we emphasized the role played by the int
facial air layer in our experiments, and pointed out tha
should be taken into account through an effective modula
amplitudeee f f , accounting for the fact that only a part of th
excitation is borne by the contacting asperities. Therefo
the modulation parametere introduced in Eq.~8! must be
understood asee f f .

On the other hand, we have measured, atf 5200 Hz,
ee f f50.4e. As explained in the Appendix, we expectee f f /e
to exhibit some relatively weak frequency dependence. T
effect depends crucially on the interfacial normal stiffne
which is difficult to measure accurately. Thus, we have c
sen to treatee f f /e as a free fitting parameter with an initia
trial value 0.4.

Figure 7 shows the best fit obtained forDm̄(e) at V
51 mm s21. It corresponds toee f f50.48e. From now on, all

FIG. 6. Predictions of the RR model for the average fricti

decrease Dm̄(e), at f 5120 Hz. Lines: RR model forV
51 mm s21 ~full line!, and V510 mm s21 ~dashed line!. Sym-
bols: raw experimental results atV51 mm s21 ~circles! and V
510 mm s21 ~triangles!. The experimental data have been av
aged over three different runs. The error bars correspond to s
dard deviations on these runs.
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experimental data will be plotted versus this effective mod
lation parameter.

3. ac response

The computed first and second harmonics of the frictio
response are plotted in Figs. 8~a! and 8~b!. One can first note
that the quasilinear dependence ofm1 andm2 on V predicted
by the perturbation calculation also holds here. Moreov
both computed harmonics saturate at largee. None of these
features agrees with the experimental behavior. We there
conclude that, in spite of the excellent agreement betw
the predicted and observedDm̄(e,V), the unmodified RR
model is insufficient to describe the full response of the
terface.

-
n-

FIG. 7. Determination ofee f f from Dm̄. Full circles: raw experi-
mental data atV51 mm s21 and f 5120 Hz. Open circles: the
same set of data plotted as a function ofee f f5e/2.1, which pro-
vides the best agreement with the RR model prediction~line!.

FIG. 8. Comparison between experimental data~symbols! and
the RR model predictions~lines! at f 5120 Hz for~a! m1(ee f f) and
~b! m2(ee f f), at V51 mm s21 ~full line and triangles!, and V
510 mm s21 ~dashed line and circles!.
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B. Linker and Dieterich’s aging law

As mentioned in Sec. I, Linker and Dieterich@2# ~LD!
proposed an extended version of the RR model in which
evolution law of the age variableF is modified according to
Eq. ~6!. We now study the predictions of this extend
model.

A perturbation calculation to first order ine, using the
equation of motion~8! and the age law~6!, leads to a first
harmonic amplitude

m15
eum̄2au

A

V

v

K

W0
. ~25!

This expression points to the fact that the dimensionless
parametera acts as a correction to the bare dynamic fricti
coefficient m̄. For granite LD proposeda50.2–0.3, i.e., a
sizable fraction ofm̄ ('0.6 for that material!. This leads one
to expect that such a value should induce significant effe
on the predicted shear response. However, we have estim
@15# an order of magnitude ofa for a sparse population o
microcontacts~Greenwood interface@11#! aging under nor-
mal load. We have considered the two limits of~i! linear
viscoelastic and~ii ! fully developed plastic creep, using pa
rameters compatible with the measured value of the RR
rameterB. Both limits lead to the same estimate fora,
namely, one order of magnitude smaller than the LD val
In view of this discrepancy, we have chosen to perform
merical integrations of Eqs.~8! and~6! for various values of
a in the range 0.02–0.2.

The magnitude of the load modulation effect onDm̄(e)
depends strongly ona, as shown on Fig. 9~a!. Whatever the
value ofa, Dm̄(e) remains quasi-independent ofV, but for
a50.2 it is significantly smaller than the experimental on

Moreover, the dependences ofm1 and m2 on e and V,
shown in Figs. 9~b! and 9~c!, as for the RR model, clearly
disagree with the experimental results.

a50.02 is found to provide a satisfactory fit forDm̄(e).
However, thisa value is small enough for age effects
become negligible, as noted in Sec. III A 1. We indeed ch
@Figs. 9~b! and 9~c!# that the correspondingm1 and m2 are
very close to those obtained from the unmodified RR mod
We are thus led to conclude the following.

~i! The LD evolution law with their proposed value ofa
does not agree with the experimental results.

~ii ! The Dm̄ data permit one to set an upper limit ona
without, however, allowing to check the validity of the fun
tional form of the LD model. Experiments at much low
frequencies~comparable to the stick-slip frequencyvc)
would be needed to answer this question.

C. Extension of the RR model

The above analysis suggests that in our ‘‘high frequenc
regime, where the response is controlled by the velo
modulations, it is the ‘‘rheological’’ factorss( ẋ) which
should be modified. As mentioned in Sec. I,ss describes the
plastic dissipation occurring in a junction of nanome
thickness between contacting asperities, and the rate
volved in ss is a rate ofirreversiblestrain of this junction.
e
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It has been shown@13# that when a multicontact interfac
is submitted to a shear much smaller than the static thre
old, its response is elastic. Since the asperity ‘‘bodie
~which deform on a micrometric thickness, of the order
their diameter! are much more compliant than th
nanometer-thick elastically pinned adhesive joint@10#, it is
their response which controls the interfacial shear stiffn
kasp. This obeys an extended Amontons law,kasp5W/l,
with l a length of order 1mm for our surfaces.

Sliding amounts to a depinning of the adhesive jo
which becomes dissipative, while the bodies of the asperi
retain their elasticity. Therefore, we can schematically rep
sent the sliding interface as an elastic element of stiffn
kasp, accounting for the bulk elastic strain of the asperiti
coupled in series to a~frictional! dissipative element~see

FIG. 9. Comparison between experimental data atf 5120 Hz

and the LD model predictions for~a! Dm̄(ee f f), ~b! m1(ee f f),
and ~c! m2(ee f f). Lines: LD model forV51 mm s21 and a50.2
~dotted line!; V510 mm s21 and a50.2 ~dashed line!, and
V510 mm s21, a50.02 ~full line!. The predictions for
V51 mm s21 and a50.02 are not plotted here because th
would be undistinguishable from the dotted lines. Symbols: exp
mental data atV51 mm s21 ~triangles! and V510 mm s21

~circles!.
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Fig. 10!. When this latter is sheared at velocityẋpl , the
corresponding force isF5 f ( ẋpl),

F5kaspxel5 f ~ ẋpl!, ~26!

with xel and xpl the elastic and irreversible displacemen
respectively. The instantaneous velocity of the center
mass of the slider thus reads

ẋ5 ẋel1 ẋpl5
d~F/kasp!

dt
1 f 21~F !. ~27!

and the tangential force on the slider finally reads:

F5 f S d

dt
~x2F/kasp! D ~28!

We therefore express the external force using the s
functional form as in Eq.~1!, but the argument of the rate
dependent term becomesẋpl . In stationary sliding under
constant normal load,F/kasp is constant; hence the usu
dependence onẋ. In the presence of a load modulation, bo
F and kasp5W0„11e cos(vt)…/l are modulated, and th
elastic strain term becomes significant.

Hereafter we present results obtained from numerical
tegration of the corresponding extended RR equations. T
ing into account the above-mentioned fact that in our exp
mental conditions, inertia can be neglected, Eq.~1! becomes

F/W5
K

W
~Vt2x!5m01A lnF 1

V0

d

dt S x2
K

kasp
~Vt2x! D G

1B lnS V0F

D0
D . ~29!

The parametersA, B, andD0 are set to their experimen
tally determined values. The lengthl has been obtained
from a quasi-static loading-unloading test@13# at various
normal loads. We findl50.6260.15 mm. In view of the
relatively large experimental uncertainty on this parame
we have integrated Eqs.~29! and ~2!, with l as a free pa-
rameter. The best fit, performed on the most sensitive d
namely, them1(ee f f) ones, is found to correspond tol
50.7 mm, within the experimental uncertainty bracket.

While Dm̄(e) is found to be only very weakly affected b
the rheological correction, this extension of the model yie
predictions form1 andm2 markedly different from those o
both the unmodified RR and LD models. That is, their qu
silinear V-dependences are replaced by much weaker o
On the other hand, neitherm1 nor m2 exhibit any longer

FIG. 10. Schematic rheological representation of the frictio
interface~see text!.
,
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saturation within the relevant rangeee f f,0.3. As appears
from Fig. 11, the global agreement is now excellent, co
firming the validity of the extended RR model.

D. Concluding remarks

This study leads us to the following conclusions.
On the one hand, from an engineering point of view, t

most spectacular effect of modulating the normal load
plied to a frictional system is to lower the dynamic frictio
coefficient significantly. This occurs as soon as the modu
tion is applied, even though its amplitude is low enough
ensure permanent interfacial contact between the slid
bodies.

On the other hand, an important aim of this study was
elucidate the question, relevant to seismology, of whether
RR model should be modified to describe the frictional
sponse to fast variations of the normal stress. We h
shown that, in order to study this, it is essential to meas

l

FIG. 11. Comparison between experimental data atf 5120 Hz
~symbols! and theextendedRR model predictions~lines! for ~a!

Dm̄(ee f f), ~b! m1(ee f f), and ~c! m2(ee f f) at V51 mm s21 ~full
lines and triangles! andV510 mm s21 ~dashed lines and circles!.



th
en
sl
d

ly
en

a

ive
ri
s

at

a
e

on
ys
n
i

th
s
in

r o

ns
li

fo

i-
ul

on
fa
to

er
r

e

e
f

i

tie
na

ct
re
s
e

he

mo-
s a

ir
sed
ng

r

is

opic
ond-
n-
is

ta-
all
x-
mic
of

lting

o-

the
he
nder

er

-
me.

ille

6818 PRE 62L. BUREAU, T. BAUMBERGER, AND C. CAROLI
and analyze not only the zero frequency component of
response to an oscillatory load, but also its harmonic cont

In the range of frequencies, much larger than the stick-
one, that we have studied, the shear response is controlle
the velocity modulation, that is by therate-dependentterm
of the RR constitutive law. However, the quantitative ana
sis of m1 andm2 data shows that the relevant displacem
rate is not, for fast load modulations,the slider velocity, but
the rate of plastic deformation of the adhesive friction
joint. This confirms our picture@10# of sliding friction as 2D
plasticity prelocalized within a nanometer-thick adhes
joint coupled to the bulk of the slider through elastic aspe
ties, and enables us to extend correspondingly the expres
of the rate-dependent part of the RR state- and r
dependent model.

The question of the precise nature of the effect of a lo
modulation on interfacial age remains at this stage op
That is, how should this effect be modeled? The only c
clusion we can draw about this is that, at least for our s
tem, if the Linker-Dieterich phenomenology is valid, the
the magnitude they suggest for the modulation effect
strongly overestimated. Clearly, it is at frequencies of
order of the stick-slip onevc that the shear response is mo
sensitive to the age dynamics. This indicates that further
vestigations of this question should be performed in eithe
two ways:~i! working at modulation frequenciesv.vc , or
~ii ! studying the low frequency content of the shear respo
to a high frequency modulation when crossing the stick-s
bifurcation line. Such work is presently in progress.

APPENDIX: ELASTOHYDRODYNAMIC RESPONSE
OF THE INTERFACIAL AIR LAYER

The aim of this appendix is to establish the equation
the vertical motion of the slider~i.e., along thez direction
normal to the interface! and to estimate the relative contr
butions of the forces that are involved. We will, as a res
justify the use of aneffectiveamplitude of modulation of the
normal load, to account for the fraction of the modulati
which is borne by the air cushion trapped within the inter
cial gap. The order of magnitude of this fraction, referred
asee f f /e in the text, and which is the only fitting paramet
of our model, is checked independently in a control expe
ment, performedin vacuo, and described in the text.

The motion of the slider along thez axis is assumed to b
decoupled from the sliding motion alongx. It is parametrized
by the widthh of the ‘‘gap,’’ i.e., the separation between th
average planes passing through the rough surfaces o
track and the slider, respectively. When no modulation
superimposed on the bare normal loadW0, the width ish0, a
value fixed by the deformation of the load bearing asperi
which are randomly distributed over the interface of nomi
macroscopic areaS0.

(a) Elastic response of the multicontact interface.Accord-
ing to Greenwood and Williamson’s model for multiconta
interfaces, the number of load bearing asperities and the
area of contact increase linearly with the load. This induce
nonlinear dependence on load of the gap thickness. Exp
mentally, it has been found thath02h.lz ln(W/W0), with
lz a length, the order of magnitude of which is given by t
roughness of the surfaces in contact~the standard deviation
e
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of the surface heights, here 1.3mm). In the small amplitude
linear regime (Dh!lz), the stiffnesskz5W/lz is a con-
stant, and the elastic restoring force in thez direction reads

Fel.W0

~h2h0!

lz
. ~A1!

This expression has its exact counterpart for tangential
tion, as discussed in the text. Shear elasticity involve
length l which is expected~@17#! to be about 1.7lz for a
Poisson ration50.44. Therefore, the measured valuel
50.7 mm yieldslz.0.4 mm.

(b) Elastohydrodynamic response of the interfacial a
layer. When the gap is, e.g., narrowed, air is compres
until being drained out of the interfacial zone. The resulti
pressure force on the slider will be denotedFp . For the sake
of evaluatingFp , we will simplify the problem, and conside
a thin layer of air, of viscosityh and densityr0 at atmo-
spheric pressureP0, trapped between twoperfectly smooth
disks of radiusR, parallel and distant ofh!R. The relative
velocity is supposed to vanish atz50 andz5h, an assump-
tion which is legitimate if the roughness of the surfaces
much smaller than the gap width. Brown and Scholz~@16#!
reported measurement of the gap width between macrosc
ground glass surfaces. At a low average pressure corresp
ing to 1025 of the Young modulus of the glass, as encou
tered in our experiments, they found that the gap width
typically five times larger than the rms roughness of the s
tistically identical surfaces. This figure is clearly too sm
for the ‘‘smoothed’’ model of the interfacial gap to be e
pected to provide a very accurate value of the hydrodyna
force, though it is certainly sufficient to estimate its order
magnitude.

An upper bound for the average pressure excess resu
from the motion of the disk isDP5eW0 /S0, with eW0 the
amplitude of the normal load modulation andS05pR2. The
macroscopic loading pressureW0 /S0 remains of order 10
mbar in the reported experiments, whilee is smaller than
unity. As a result,DP remains much smaller than the atm
spheric pressureP0. However, thecompressibilityof the air
layer may be of paramount importance, as suggested by
following argument. For infinite plates, no leak occurs at t
edge of the gap and the response of the layer, trapped u
the mean pressureP0, is elastic with an overall stiffness:

kair5P0S0 /h0 . ~A2!

For P05105 Pa, S0549 cm2, andh056.5 mm, one finds
kair57.5 107 N/m, namely, one order of magnitude larg
than the interfacial stiffnesskz originating from the load
bearing asperities@see Eq.~A1!# at W057 N. For a finite
radiusR, edge flow will reduce the amount of air to be com
pressed in order to accommodate the change of gap volu
It is therefore necessary to compute the expression ofFp by
taking account the radial, viscosity controlled, Poiseu
flow which results from the density~hence pressure! gradient
compatible with mass conservation.

The continuity equation for the radial flow reads

]

]t
~rh!1

1

r

]

]r
~r v̄rh!50, ~A3!
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wherev̄(r ) is the mean velocity at radiusr ~averaged acros
the gap along thez direction!. The pressure field is given b
the equation of state of the air at pressures close toP051
atm, which is assumed to be

P

r
5

P0

r0
. ~A4!

The set of equations is closed by assuming that the flow i
the Poiseuille type, namely, is parabolic along thez direction
and varies slowly along the radial direction according to

v̄52
h2

12h

]P

]r
. ~A5!

As mentioned, the pressure modulation remains m
smaller thanP0, and the gap modulation is smaller thanh0;
hence linearization of Eqs.~A3!–~A5! is legitimate. One
therefore setsP5P01dP, r5r01dr, and h5h01dh,
with dP!P0 , dr!r0 and dh!h0. Eliminating dr yields
the following equation for the pressure field:

h2

12h

1

r

]

]r S r
]~dP!

]r D2
d Ṗ

P0
5

dḣ

h0
, ~A6!

where the dot indicates the partial derivative with respec
time.

Assuming that the normal elastic stiffnesskz of the as-
perities remains linear, the gap modulation resulting from
normal load one is harmonic and we therefore seek fo
complex solution to Eq.~A6! of the formdP5d P̃ exp(ivt),
with dh5dh̃ exp(ivt). Taking into account the boundar
conditiondP50 at r 5R, and the symmetry requirementv̄
50, and hence]P/]r 50, at r 50, one obtains

d P̃52P0

dh̃

h0
F12

J0~gr !

J0~gR!G , ~A7!

with J0 the Bessel function of zeroth order, andg a complex
constant given by

g5
12 i

A2
A12hv

P0h0
2

. ~A8!

Integration of the pressure field over the interface yields
complex amplitude of the pressure force,

dF̃p5P0pR2
dh̃

h0

J2~gR!

J0~gR!
. ~A9!

with J2 the Bessel function of second order.
The asymptotic limits deserve comment. ForgR→` and

J2 /J0→21, dF̃p is real, and one recovers the purely elas
response@Eq. ~A2!# predicted for largeR. It also corresponds
to the high frequency limit for which the air has no time
leak. ForgR→0, J2 /J0→(gR)2/852 iv(3hR2)/(2P0h0

2);

hencedF̃p is purely imaginary, and reduces to a linear v
cous damping force which could have been derived by
suming a noncompressive Poiseuille flow. For intermed
of

h

o

e
a

e

-
s-
te

values ofgR, dF̃p has both a reactive component, whic
increases the interfacial stiffness, and a dissipative com
nent.

(c) Prediction for the effective amplitude of load modul
tion. The slider of massM oscillates in the normalz direction
under the combined action of the load modulation, the res
ing elastic force resulting from deformation of the load be
ing asperities and compression of the air cushion, and
damping force resulting from the air flow. The complex am
plitude of modulation of the gap widthdh̃ is therefore given
by

~2Mv21kz!dh̃2dF̃p5eW0 , ~A10!

with dF̃p given by Eq.~A9!.
The fraction of the load which is effectively borne by th

microcontacts isee f f /e5ukzdh̃/(eW0)u. It reads

ee f f

e
5U12

v2

v0
2

2
pR2P0

W0

lz

h0

J2~gR!

J0~gR!U
21

, ~A11!

with v05Akz /M .
The assumption thatee f f /e does not depend on the am

plitude of the modulation relies upon the fact that both t
elasticity and viscosity remain linear; that is, as previou
discussed, thatDh!lz and h0. This reduces toee f f!1, a
criterion which is always fulfilled in our experiments.

For W057 N, M51.6 kg, lz.0.4 mm, andv0 /(2p)
5530 Hz. Hence, at 120 Hz, the inertia is 5.231022 of the
elastic restoring force due solely to the asperities. It is cl
from the above analysis that a key parameter for evalua
the viscoelastic response of the air is the gap widthh0. Tak-
ing, as discussed previously, the conservative value of
times the roughness, namely,h056.5 mm, h51025 Pa s,
and R53.9 cm, one computesgR54(12 i ) and uee f f /eu
.0.24, a value of the same order of magnitude than the o
namely, 0.48, which is found to provide the best agreem
between the experimental data and the model prediction
Dm̄. The role of the interfacial air cushion is further co
firmed by the control experiment performedin vacuo. At a
remaining pressure of 1 mbar, the elastic stiffness of the
layer falls two orders of magnitude below the multiconta
one. Moreover, since the mean free path~at 300 K! of the gas
molecules is now of order several 10mm, i.e., larger than the
gap width, the viscosity of the layer should vanish. Con
quently, the effective amplitude is essentially ruled by t
slider inertia according toee f f

vacuum/e.u12v2/v0
2u2151.2 at

200 Hz. At atmospheric pressure, keeping the nominal va
S0549 cm2, ee f f

air /e50.23 at 200 Hz. When bringing th

data forDm̄(e) performed in the air andin vacuoto collapse
on a single curve, as explained in the text, one makes us
a scaling ratio:ee f f

air /ee f f
vacuum. Its predicted value is 0.20. Th

experimental value is 0.4.
The fact that, in both cases, the estimated value is sma

than the observed one by the same amount may be pos
attributed to some long wavelength modulations of the g
width h0 which is likely to remain after the lapping proces
Microcontacts may be distributed on patches of macrosco
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area smaller thanS0, separated by regions of much wid
gap in which the air would play a negligible role. Typicall
a patch radius of 2.5 cm, while keeping the other parame
unchanged, would account for the observed valueee f f /e
.0.48 at 120 Hz in the air. This would correspond to
effective area of 0.4S0, a value still large enough for th
microcontacts—the number of which does not depend onS0,
according to Greenwood—to remain elastically independ
In addition, we have assumed a single degree of freedom
the slider, which is certainly a strong requirement since
slider is left free to find its own seat on the track. It is cle
oli
rs

t.
or
e
r

that a small amount of ‘‘rocking’’ would promote the a
flow and reduce the cushion effect.

Finally, normal load modulation induces a tangential o
cillating motion of the slider of amplitudeDx, and hence an
air shear flow within the gap. The associated ac viscous fo
on the sliderhvDxS0 /h0, which has been neglected in ou
models, must be compared to the leading term in the
dependent friction force for oscillations about the sliding v
locity V, namely,AW0vDx/V. The ratio of both terms is
hS0V/(W0h0).1027 for V5100 mm/s; therefore, the
shear viscosity of the layer is totally negligible.
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